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ABSTRACT	
The	simplest	form	of	a	classical	antenna	is	the	dipole	antenna,	which	is	essentially	
two	pieces	of	wire	placed	end	to	end	with	a	feed	point	in	the	middle.	The	length	of	
this	antenna	is	typically	half	the	wavelength	of	the	signal	that	is	being	received	or	
transmitted.		An	“electric	small”	antenna	is	defined	as	an	antenna	of	much	shorter	
dimensions	 than	 the	 wavelength	 of	 the	 signals	 it	 is	 designed	 for.	 Small	 electric	
antennas	have	an	advantage	when	space	is	the	most	essential	factor.	Satellites	and	
mobile	communication	apparatuses	for	example	can	use	small	antennas	in	order	to	
free	up	more	space	for	other	components.	The	problem	with	classical	electric	small	
antennas	is	that	their	bandwidth	and	radiation	efficiency	shrink	as	they	get	shorter.	
Although	such	antennas	have	been	in	use	for	decades,	they	remain	difficult	to	design	
and	limited	in	their	applicability.	However,	the	classic	approach	of	studying	metal	
antennas	using	only	Maxwell	equations	limits	the	real	internal	nature	of	them	as	
metal	 lattice	 structures	 and	 thus	 as	 quantum	 wells	 of	 free	 electrons.	 When	
interpreted	this	way,	free	electrons	are	obeying	the	Schrodinger	wave	equation	and	
this	 view	 can	 give	 new	 ideas	 for	 designing	 effective	 curvilinear	 electric	 small	
antennas.		Such	a	class	of	electric	small	helical	and	spiral	antennas	is	proposed	in	
the	following	paper.	

	
Keywords:	electric	small	antenna,	antenna	as	quantum	trap,	curvilinear	antennas,	helical	
antennas,	spiral	antennas.				

	
INTRODUCTION		

It	is	well	known	that	given	the	electric	current	of	any	antenna	for	any	operating	frequency,	the	
electromagnetic	field	(near	and	far)	can	be	calculated	directly	from	Maxwell	equations.	Even	if	
we	remain	in	the	class	of	the	simplest	kind	of	antennas,	which	are	the	one-dimensional	center-
fed	linear	wire	antennas	of	an	arbitrary	length,	only	numerical	methods	exist	for	finding	their	
approximate	electric	current	distribution	[1].	However,	in	the	case	that	the	length	L	of	a	thin	
center-fed	rectilinear	antenna	is	equal	to	L=n*λ/2,	where	λ	is	the	operating	wavelength	of	the	
electromagnetic	wave	with	n	an	integer,	its	electric	current	can	be	accurately	calculated	and	
being	given	by	a	sinusoidal	standing	wave	of	wavelength	λ	and	frequency	C/λ	(where	C	is	the	
speed	of	light).	
	
My	personal	view	is	that	all	the	impressive	progress	in	the	field	of	linear	antennas	is	mostly	due	
to	laborious	experimental	work	rather	than	a	clear	theoretical	understanding	of	their	internal	
operation.	 This	 is	 the	 result	 of	 trying	 to	 describe	 this	 operation	 as	 the	 effect	 of	 action	 of	
electromagnetic	 fields	 on	 them,	 considering	 the	 antennas	 as	 simple	 non	 active	 conducting	
structures	 and	 thus	 ignoring	 their	 internal	 natural	 dynamics	 as	 quantum	 wells	 for	 free	
electrons.	In	the	present	paper	we	focus	on	thin	linear	antennas	comprising	a	standard	metallic	
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lattice	 although	 an	 extension	 of	 the	 proposed	 method	 to	 more	 complicated	 structures	 is	
possible.		
	
It	will	be	shown	in	the	present	report	that	the	optimum	operation	of	any	type	of	metallic	lattice	
linear	 antenna	 can	 be	 achieved	when	 the	 internal	 spatial	 waveforms	 of	 their	 free	 electron	
density	 become	 resonant	with	 the	 externally	 applied	 electromagnetic	 fields,	 following	 their	
quantum	mechanical	behavior	as	described	by	the	respective	Schrodinger	equation.	An	initial	
presentation	of	antennas	as	quantum	wells	of	free	electrons	has	already	been	published	by	the	
author	[2].		
	
Small	electric	antennas	[3]	are	defined	as	the	antennas	that	can	operate	effectively	although	
their	dimensions	are	much	smaller	than	the	wavelength	of	their	operation.	It	is	suggested	that	
in	order	 to	design	antennas	 for	specific	applications,	 like	small	electric	antennas,	we	should	
take	into	consideration	their	internal	nature	as	quantum	wells	of	free	electrons	governed	by	
the	Schrodinger	wave	dynamics.	A	theoretical	approach	combining	Schrodinger	and	Maxwell	
equations	 in	order	 to	understand	 the	properties	of	 curvilinear	antennas	 is	presented	 in	 the	
paper	with	the	aim	to	design	“small	electric”	antennas.			
	

RECTILINEAR	METALLIC	ANTENNAS	AS	QUANTUM	WELLS	OF	FREE	ELECTRONS		
Here,	an	example	of	a	one-dimensional	rectilinear	antenna	is	studied	as	a	quantum	well	of	free	
electrons.	The	most	 common	antenna	of	 this	 kind	 is	 a	 center-fed	 linear	metallic	 antenna	of	
length	L.	Even	the	tinny	metallic	antennas	of	a	few	mm	long	have	a	tremendous	number	of	free	
electrons.	Thus,	we	can	consider	all	the	metal	lattice	rectilinear	antennas	as	wells	of	a	cloud	of	
free	 electrons	 obeying	 the	 Quantum	 Mechanical	 laws	 as	 described	 by	 the	 respective	
Schrodinger	equation.		
	
Let	us	consider	a	rectilinear	antenna	taken	as	very	thin	in	comparison	to	its	length.	Thus,	it	can	
be	considered	as	a	one-dimensional	metal	 lattice	structure	along	the	x-axis	 from	0	to	L.	The	
cloud	of	free	electrons	is	obeying	the	stationary	Schrodinger	wave	equation	given	by:	
𝜕!𝑌(𝑥)/𝜕!𝑥 = −(𝜀 − 𝑈) ⋅ 𝑌(𝑥)		 	 	 	 	 	 (1a)	
	(𝜀 − 𝑈) = !"

($/!&)!
∗ (𝐸 − 𝑉(𝑥))			 	 	 	 	 	 (1b)	

		
V(x)	is	the	electrostatic	potential	acting	on	the	free	electrons	and	E	is	the	energy	of	the	system	
necessary	 to	 form	 the	 respective	 stationary	 Schrodinger	 wave.	 In	 fact,	 there	 is	 an	 internal	
electrostatic	action	on	free	electrons	arising	from	the	ions	of	the	metallic	lattice,	however,	this	
potential	action	can	be	omitted	and	the	overall	action	due	to	the	scattering	of	free	electrons	
with	the	positive	lattice	ions	is	usually	replaced	by	an	equivalent	Ohmic	resistance.		
	
In	the	classic	Born	interpretation	of	the	Schrodinger	equation,	the	function	|𝑌(𝑥)!|	defines	the	
probability	of	an	electron	being	at	point	x.		Due	to	the	extremely	high	number	of	free	electrons,	
we	can	assume	that		|𝑌(𝑥)!|	is	proportional	to	the	number	of	electrons	at	x,	thus	this	function	
defines	 the	 electric	 charge	 along	 the	 conducting	 linear	 structure	 Q(x)	 and	 as	 a	 result,	 the	
function		𝑌(𝑥)𝜕𝑌(𝑥)/𝜕𝑥			is	proportional	to	the	electric	current	of	the	linear	antenna	EC(x).	
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The	eigenvalues	and	eigenfunctions	of	linear	antennas	will	then	be	given	by	the	solutions	of	the	
Schrodinger	equation	𝜕!𝑌(𝑥)/𝜕!𝑥 = −𝜀 ⋅ 𝑌(𝑥),	i.e.	the	functions	without	any	external	voltage	
excitation.	 These	 eigenfunctions	 should	 be	 a	 set	 of	 eigenstates	 	 𝑌𝑛(𝑥) 	with	 respective	
eigenvalues	 εn	 defined	 by	 the	 geometric	 boundaries	 of	 the	 curvilinear	 structure,	where	 the	
respective	electric	current	function	I(x),		is	taken	to	be	zero.	Thus,	at	x=0	and	x=L,	either	Y(x)=0	
or	𝜕𝑌(𝑥)/𝜕𝑥 = 0	
	
Let	us	assume	that	the	boundary	conditions	for	a	certain	curvilinear	antenna	are	Y(0)=0	and	
Y(L)=0,	hence	the	respective	eigenstates	are:	
	𝑌𝑛(𝑥) = 𝐴𝑛	𝑠𝑖𝑛(2𝑚𝜋𝑥/2𝐿)		
	
while	for	boundary	conditions	Y(0)=0	and	 	𝜕𝑌(𝐿)/𝜕𝑥 = 0	,	 the	respective	eigenstates	should	
be:	
	𝑌𝑛(𝑥) = 𝐴𝑛	𝑠𝑖𝑛((2𝑚 + 1)𝜋𝑥/2𝐿)	
	
Thus,	for	both	cases	𝑌𝑛(𝑥) = 𝐴𝑛	𝑠𝑖𝑛(𝑛𝜋𝑥/2𝐿)	where	n	is	an	even	or	an	odd	integer	the	electric	
current	I(x)	in	the	linear	antenna	will	be	given	as			𝐼(𝑥) = 𝐼𝑛 ∗ 𝑠𝑖𝑛	(𝑛𝜋𝑥/𝐿)	.	For	both	cases	the	
respective	eigenvalues	i.e.	the	energy	of	the	system	for	each	eigenstate	will	also	be	given	as	εn=	
(nπ/2L)^2.	In	a	similar	way,	it	can	be	proven	that	for		𝜕𝑌(0)/𝜕𝑥 = 0	and	Y(L)=0	or	𝜕𝑌(𝐿)/𝜕𝑥 =
0	the	electric	current	and	the	respective	energy	eigenvalues	remain	the	same	as	previously.	
	
The	 fundamental	 eigenstate	 for	 the	 electric	 current	 is	 the	 one	where	 the	minimum	 energy	
eigenvalue	is	achieved.	Thus,	the	fundamental	eigenstate	is	achieved	for	n=1,	where	the	energy	
is	minimum	and	equal	 to	 	𝜀1	=(π/2L)^2,	and	the	respective	electric	current	 in	the	rectilinear	
antenna	is		I(x)=I1*	𝑠𝑖𝑛	(𝜋𝑥/𝐿).					
	
Thus,	the	lowest	eigenstate	for	a	 linear	center-fed	antenna	of	 length	L	is	achieved	by	a	semi	
sinusoidal	current	wave	that	becomes	zero	at	the	endpoints	and	maximum	at	its	center,	where	
we	place	the	feed	points	of	the	antenna.	This	antenna	will	be	tuned	by	an	internal	voltage	source	
(transmitter)	or	by	an	external	Electromagnetic	 field	(receiver),	with	a	sinusoidal	voltage	of	
angular	frequency	ω=k*C	where	k	is	equal	to	the	wave	number	of	its	fundamental	eigenstate	
π/L	and	C=speed	of	light,	at	which	state	it	will	generate	its	highest	output.		
	
In	general,	a	linear	bipolar	antenna	of	length	L	can	be	also	tuned	in	higher	frequencies	ωn=n*ω	
where	tuning	is	achieved	for	higher	harmonics,	kn	=(n*π)/L	and	ωn	=kn*C.		Any	proper	center	
fed	bipolar	antenna	is	tuned	with	odd	harmonics	that	give	a	maximum	output	at	their	centers,	
while	the	even	harmonics	give	zero	output	in	their	centers.	Bipolar	antennas	are	not	used	for	
higher	frequencies	because	they	demand	more	energy	(n2	times)	to	transmit	and	stronger	fields	
to	receive.					
			
Thus,	the	smallest	tuned	center-fed	linear	antenna	has	a	length	of	half	of	the	wavelength	of	the	
electromagnetic	wave,	where	it	is	designed	to	operate	i.e.		L=λ/2.		In	the	case	of	a	conducting	
ground	plane	below	the	half	of	the	antenna,	its	length	could	be	L=λ/4.	In	a	higher	wavelength	
range	(smaller	frequencies	than	f),	the	rectilinear	bipolar	antenna	has	a	deteriorating	operation	
demanding	 far	more	 energy	 in	 order	 to	 transmit	 or	 receive	 the	 respective	 electromagnetic	
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signals.	An	electric	small	antenna	is	defined	as	one	with	substantially	smaller	dimensions	in	
relation	to	its	operating	wavelength	band	operating	with	relatively	small	energy.			
	

CURVILINEAR	ANTENNA	AS	QUANTUM	WELL	OF	FREE	ELECTRONS		 	
Let	us	now	consider	a	curvilinear	one-dimensional,	very	 thin	metallic	antenna	 inside	 three-
dimensional	free	space.	The	geometrical	shape	of	the	antenna	can	be	defined	as	a	function	of	its	
linear	length	s(x,y,z)	as	a	parametric	curve,	where	𝐿 ≥ 𝑠 ≥ 0.		
	
The	 geometry	 of	 the	 curvilinear	 metallic	 structure	 of	 the	 antenna	 defines	 the	 Schrodinger	
equation	 of	 the	 cloud	 of	 free	 electrons	 inside	 its	 metallic	 lattice.	 More	 accurately	 the	
Schrödinger	wave	equation	for	a	one-dimensional	(very	thin)	curvilinear	conducting	structure	
developed	along	its	parametric	length	s	as	has	been	proved	[4]	to	be	of	the	form	
	
𝜕!𝑌(𝑠)/𝜕!𝑠 = −>(

!())
*

+ 𝜀? ⋅ 𝑌(𝑠)	 	 	 	 	 (2)	
	
Where	σ(s)	is	the	standard	local	curvature	of	the	curvilinear	one-dimensional	antenna	and	
	ε= !"

($/!&)!
𝐸		is	the	reduced	energy	of	the	cloud	of	free	electrons	inside	the	metallic	lattice	of	the	

antenna.	
	
In	 equation	 (2)	 we	 have	 a	 boundary	 value	 problem	 for	 a	 second	 order	 ordinary	 linear	
differential	equation	with	variable	coefficient	because	 its	curvature	 factor	 is	a	 function	of	 s,	
however,	there	are	several	numerical	methods	that	can	tackle	the	problem.	
	
	In	the	present	paper	an	effective	technique	named	“resonance	technique”,	used	in	many	similar	
applications	 by	 the	 author	 [5,6]	 will	 be	 applied.	 The	 great	 advantage	 of	 the	 “resonance	
technique”	method	is	that	it	calculates	initially	the	eigenvalues	of	the	second	rank	differential	
equation	and	afterwards	the	respective	eigenstates	i.e.	the	harmonics	of	the	relative	antenna	
are	readily	obtained.	
	
It	should	also	be	mentioned	that	the	harmonics	of	the	antenna	are	derived	independently	of	the	
properties	(frequency	f)	of	the	acting	electromagnetic	field.	However,	for	successful	operation	
of	the	antenna	the	frequency	of	the	electromagnetic	field	should	be	adjusted	accordingly.				
The	method	is	shortly	presented	as	follows.	
	
The	original	ODE	is	mathematically	equivalent	and	is	transformed	to	the	following	system	of	
two	first	order	differential	equations:	
																																																															∂V(s)	/	∂s	=	−	j*A	(s)*I(s)	
																																																															∂I(s)	/	∂s	=	−	j*V(s)	
			
Where	the	used	functions	are	defined	as:		V(s)=	j	*∂Y(s)	/	∂s,	I(s)=	Y(s)	and	A(s)=	((

!())
*

+ 𝜀)		
These	equations	are	equivalent	to	a	set	of	two	“spatial	electric-lines”	along	s.	The	non-linear	
homogeneous	 system	 of	 differential	 equations	 has	 solutions	 (eigenstates)	 only	 for	 special	
values	of	the	energy	ε	(energy	eigenvalues),	and	the	fundamental	eigenstate	is	the	one	for	the	
minimum	energy	eigenvalue.	
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The	 antenna	 length	 s	 can	 be	 separated	 in	 very	 small	 intervals	 by	 N+1	 successive	 points	
s1,s2,s3,….	where	the	first	point	is	at		s1=0	and	the	final	point	at	sN+1=L.	The	respective	successive	
intervals	are	named,	ds1=s2-s1,	ds2=s3-s2,	etc,	while	the	final	interval	is	the	dsN	.	
	
Taking	into	consideration	the	mathematical	properties	of	the	“spatial	electric	lines”,	in	the	case	
of	a	harmonic	(eigenstate)	the	curvilinear	structure	will	be	in	a	kind	of	spatial	resonance.	Thus,	
in	every	point	sM	of	it	the	impedances	calculated	from	the	left	and	right	should	be	imaginary	
and	in	case	of	the	proper	ε	opposite	numbers	of	zero	sum.	
	
We	can	calculate	numerically	the	overall	impedance	in	a	middle	point	sM	of	the	curve	as	shown	
from	the	left	and	from	the	right,	starting	from	the	impedances	in	the	terminal	points	s1	and	sN+1	
,	where	the	impedances	are	zero	(in	case	that	V(s)	is	zero)	or	an	extremely	high	number	(	in	
case	 that	 I(s)=0),	 and	applying	 the	 resonance	condition	 for	 sufficiently	 small	ds	 intervals	 in	
comparison	to		(

!())
*
,	the	recursive	formula	will	be,		

𝑍(𝑠+,-) = (𝑍(𝑠+) − 𝑗 ∗ 𝐴(𝑠+) ∗ 𝑑𝑠+)/(−𝑗 ∗ 𝑍(𝑠+) ∗ 𝑑𝑠+ + 1)					 	 	 (3)	
from	s1	to	sM			and	from	sN+1	to	sM	is	obtained.		
	
The	 derived	 impedances	𝑍(𝑠.) = 𝑉(𝑠.)/𝐼(𝑠.)		 at	 sM	 from	 the	 left	 and	 right	 recursions	 are	
imaginary	numbers	and	their	sum	should	be	zero	in	case	of	resonance	and	the	appearance	of	
an	 eigenstate.	 If	we	 scan	 numerically	 a	 reasonable	 interval	D	 around	 zero,	we	 can	 find	 the	
respective	minimum	positive	energy	eigenvalue	ε1.		
	
Using	the	defined	fundamental	eigenvalue	 in	the	 function	 	𝐴(𝑠+),	 the	eigenstate	𝑌(𝑠+)=	𝐼(𝑠+)	
and	 its	 derivative	 ∂𝑌(𝑠+)	/	 ∂s=	𝑉(𝑠+)/j	 at	 every	 point	 s	 can	 be	 calculated	 using	 the	matrix	
formula	

	[𝑉(𝑠+,-)			𝐼(𝑠+,-)] ≈ F		1		 − 𝑗𝐴(𝑠+)𝑑𝑠+		−𝑗𝑑𝑠+													1	
G [𝑉(𝑠+)	𝐼(𝑠+)	]	 	 	 	 (4)	

	
The	starting	point	is	taken	to	be	the	terminal	s1	with	the	initial	vector	being	taken	as	
[𝑉(𝑠-)	𝐼(𝑠-)	] = [1							0	]	.	 	That	vector	 is	related	to	the	boundary	conditions	 imposed	on	the	
procedure	of	calculating	the	eigenvalue.		
	
Furthermore,	the	eigenstate	electric	current	𝐸𝐶(𝑠+)		in	every	point	of	the	curvilinear	antenna	
can	be	calculated	by	the	formula		
	𝐼(𝑠+)	=		𝐸𝐶𝑛	|𝑌(𝑥)𝜕𝑌(𝑥)/𝜕𝑥	|=		𝐸𝐶𝑛	|	𝐼(𝑠+)	𝑉(𝑠+)	|	 	 	 	 (5)	
	
The	procedure	with	the	respective	MATLAB	routines	is	presented	in	appendix	B	of	the	present	
paper.										
																																																																			

CENTER-FED	HELICAL	METAL	ANTENNAS		
Helical	antennas	are	already	in	use	in	several	applications	while	a	classic	presentation	of	their	
properties	and	uses	can	be	found	in	[7,8].	Our	previous	quantum	mechanical	analysis	of	a	very	
thin	 curvilinear	 antenna	 can	 be	 used	 also	 for	 helical	 antennas	 as	 quantum	 wells	 of	 free	
electrons.	Their	study	will	be	facilitated	in	case	they	have	a	constant	curvature	σ.	In	this	case	
the	factor	
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	A(s)=	((
!())
*

+ 𝜀)	is	a	constant	independent	of	s,	along	the	curvilinear	antenna	extending	from	0	
to	L.		
	
The	respective	ODE	system	becomes	a	second-rank	partial	differential	equation	with	constant	
coefficients		
		𝜕!𝑌(𝑠)/𝜕!𝑠 = −𝐴 ⋅ 𝑌(𝑠)																				 	 	 	 	 	 (5a)	
	A=	((

!

*
+ 𝜀)		 	 	 	 	 	 	 	 	 	 (5b)	

	
The	functions		𝑌(𝑠)	should	be	a	set	of	eigenstates		𝑌𝑛(𝑠)	with	respective	eigenvalues	εn	defined	
by	 the	 geometric	 boundaries	 of	 the	 curvilinear	 antenna,	 where	 the	 electric	 current	 wave	
function	is	considered	zero.	Thus,	at	s=0	and	s=L,	either	Y(s)=0	or	𝜕𝑌(𝑠)/𝜕𝑠 = 0.	According	to	
geometry,	the	only	set	of	one-dimensional	curves	of	non-zero	constant	curvature	in	a	three-
dimensional	space	is	the	set	of	helical	curves.	
	
The	curved	linear	conducting	helical	antennas	of	constant	curvature	σ	are	in	general	given	as	
functions	of	a	parameter	t	(angle	length),	by	the	set	of	equations	in	Cartesian	coordinates	as		

𝑥(𝑡) = 𝑎 𝑐𝑜𝑠 (𝑡)	, 𝑦(𝑡) = 𝑎	𝑠𝑖𝑛	(𝑡)	, 𝑧(𝑡) = 𝑏	𝑡, 0 ≤ 𝑡 ≤ 𝑇	
		𝑠(𝑡) = 𝑡(𝑎! + 𝑏!)-/! 		=> 	𝐿 = 𝑇(𝑎! + 𝑏!)-/!	 	 	 	 	 (6)	
	
The	constant	curvature	σ	of	this	helical	wire	is	given	by	𝜎 = |𝑎|/(𝑎! + 𝑏!)		
	
As	a	result,	of	the	boundary	conditions,	following	the	analysis	of	the	rectilinear	antenna	that	
has	a	constant	curvature	equal	to	zero,	for	any	set	of	boundary	conditions	the	harmonics	of	the	
electric	current	(EC)	in	the	helical	antenna	will	be	given	by	

𝐼(𝑠) = 𝐼𝑛 ∗ 𝑠𝑖𝑛 >+&
/
𝑠? , (		(

!

*
+ 𝜀) = ( 0!

*(0!,1!)!
+ 𝜀	) = >+&

!/
?
!
	 	 	 (7)	

	
Thus,	the	minimum	energy	for	excitation	of	the	fundamental	harmonic	it	will	be	calculated	by	
the	relation	

𝜀	 = >+&
!/
?
!
− 0!

*(0!,1!)!
> 0	 	 	 	 	 	 	 	 (8)	

	
Let	us	assume	that	the	arc	of	the	helix	is	given	by	an	integral	number	of	semi-circles	T=k*π,	
where	k	is	an	integer,	hence			𝐿 = 𝜋𝑘(𝑎! + 𝑏!)-/!	

𝜀	 =
2 "!#3

!

0!,1!
− 0!

*(0!,1!)!
> 0	 	 	 	 	 	 	 	 (10)	

	
For	a	helical	arc	antenna	of	b	<<	α,	the	minimum	positive	energy	ε	is	achieved	for	n=k	thus	L=nπ	
and	is	then	given	as					
𝜀	 = V 1!

*(0!,1!)!
W ∿0	 	 	 	 	 	 	 								 	 (11)	

	
Under	 these	 conditions	 the	minimum	energy	 of	 the	 fundamental	 eigenfunction	 can	become	
negligible	 thus,	 the	 curved	 helical	 wire	 can	 be	 tuned	 by	 a	 small	 voltage	 potential	 and	 the	
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respective	fundamental	harmonic	electric	current	of	the	helical	antenna	of	k	semi-circles	will	
be	given	by:	
	𝐸𝐶(𝑠) = 𝐼	𝑠𝑖𝑛(𝑡)					, 0 ≤ 𝑡 ≤ 𝑛𝜋	
	
Hence	the	fundamental	harmonic	arising	from	the	Schrodinger	quantum	behavior	of	the	free	
electron	cloud	inside	the	metallic	lattice	of	the	antenna	is	sinusoidal	along	s.		
	
For	a	properly	designed	symmetric	center-fed	helical	antenna,	L	should	be	of	an	odd	number	of	
semi-circles,	k=2*m+1	and	the	 feed	points	of	 the	antenna	will	be	at	 the	center	of	 the	(m+1)	
semi-circle.		
	
Up	 to	 this	 point,	 no	 mention	 has	 been	 made	 about	 the	 wavenumber	 and	 the	 respective	
frequency	of	 the	 transmitted	or	 received	electromagnetic	 signal	by	 the	helical	antenna.	 It	 is	
possible	that	at	least	an	optimal	case	could	be	for	the	wavelength	of	the	signal	to	be	λ=	π/(2L),	
but	this	optimality	can	be	proved	only	experimentally.		
	

CENTER-FED	HELICAL	ANTENNAS	AS	ELECTRIC	SMALL	ANTENNAS	
As	an	 example	of	 the	previous	 analysis	 let	 us	 consider	 a	helical	 antenna	with	 a	 radius	 a=1,	
b=0.02,	thus	slope	a/b=50	and	pitch	2πb.	The	overall	length	of	this	antenna	is	chosen	to	be	an	
odd	integer	number	of	semi-circles	i.e.	𝑇 = 11𝜋.	Taking	into	consideration	that	the	b	is	much	
smaller	than	the	radius	α	the	length	of	the	antenna	𝐿 = 𝑇(𝑎! + 𝑏!)-/! ≈ 𝑇 ∗ 𝑎 = 11𝜋𝑎.	This	thin	
metallic	helical	antenna	is	shown	in	figure	(a)	which	should	be	center-fed	in	our	case.		
	

	
figure	(a).	A	helical	antenna	of	a=1,b=0.02,	and	arc-length	T=11π.		
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figure	(β).	Electric	current	along	the	length	s	of	the	helical	antenna	of	fig(a)	is	shown,	for	its	

fundamental	operation.		
	
If	this	was	a	rectilinear	center-fed	antenna,	the	fundamental	wavelength,	i.e.	the	one	with	the	
minimum	 energy	 requirement	 to	 activate,	 would	 be	𝜆 = 𝐿/2𝜋 ,	 and	 its	 operating	 frequency	
would	 be	𝑓 = 𝐶/2𝐿 		 where	 C	 is	 the	 speed	 of	 light.	 In	 this	 center-fed	 helical	 antenna,	 the	
fundamental	wavelength	along	its	length	should	be	𝜆 = 2𝐿	
	
However,	no	 restrictions	 are	necessary	 to	be	 imposed	on	 the	helical	 antenna	 related	 to	 the	
operating	frequency	of	the	electromagnetic	appropriate	for	its	optimal	operation.	Given	the	fact	
that	 the	minimum	 energy	 of	 the	 fundamental	 is	 almost	 zero,	 it	 is	 possible	 that	 the	 helical			
antenna	to	operate	sufficiently	with	frequency	𝑓 = 𝐶/2𝐿.	In	this	case,	the	helical	antenna	will	
be	an	electric	small	antenna	where	its	dimensions	approximately	are	defined	by	2𝛼,	while	the	
equivalent	rectilinear	antenna	dimensions	defined	by	its	length	will	be	∿17	times	higher:	

𝐿 = 5.5𝜋(2𝑎) ≈ 17(2𝛼)	
		
The	proof	of	this	argument	should	be	experimentally	tested,	and	due	to	its	validity	if	true,	will	
be	necessary	a	proper	laboratory	be	funded.	
	
In	any	case,	theoretical	evidence	points	that	this	helical	antenna	could	be	a	much	better	choice	
for	this	relatively	low-frequency	regime	and	the	overall	length	L	of	the	helix,	in	relation	to	the	
small	linear	bipolar	antenna	of	the	same	dimensions	(length	∿2a).	
	

SPIRAL	PLANAR	ANTENNAS	
A	similar	quantum	mechanical	treatment	of	a	spiral	planar	rectilinear	antenna	can	be	used	in	
order	 to	 calculate	 its	optimal	dimensions	 for	an	operation	as	a	 small	 electric	antenna.	As	 is	
known	there	are	many	types	of	planar	spiral	antennas	[9]	and	almost	all	of	them	have	a	variable	
curvature	along	 	 	 length.	 In	 the	present	paper	we	are	going	 to	 limit	our	study	 to	 the	planar	
Archimedean	 spiral	 antennas	 considering	 that	 all	 the	 other	 planar	 spiral	 antennas	 can	 be	
studied	in	a	similar	way.		
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The	Archimedean	planar	spiral	antenna	is	given	by	the	equation	𝑟 = 𝑎 + 𝑏𝜃	where	r,θ	are	its	
polar	coordinates	a	is	its	initial	radius	and	b	is	its	pitch	, 0 ≤ 𝜃 ≤ 𝑇.	In	the	following	figure	an	
Archimedean	planar	spiral	antenna	of	a=1,	b=0.02	and	overall	arc-length	11π	is	given.	
	

	
figure	(c).		An	Archimedean	spiral	antenna	of	initial	radius	a=1,	b=0.02,	arc-length	11π.		

	
The	 curvature	 of	 this	 planar	 spiral	 antenna	 in	 polar	 coordinates	 is	 given	 by	 𝜎 = (𝑟! +
2𝑏!)/(𝑟! + 𝑏!)4/!	that	for	b<<a	(very	small	in	comparison	to	a)	gives	σ≈1/r.	while	its	length	
s(θ)	of	this	spiral	is	given	by:	
		𝑠(𝜃) = ∫ b√𝑟! + 𝑏! 𝑑𝜃d5

6 , 𝑤ℎ𝑒𝑟𝑒	𝑓𝑜𝑟	𝑏! ≪ 𝑟!, 𝑠(𝜃) ≈ ∫ (𝑟 𝑑𝜃)5
6 = 𝑎𝜃 + 0.5𝑏𝜃!	

	
And			𝑑𝑠 = √𝑟! + 𝑏! 𝑑𝜃 ≈ 𝑟 𝑑𝜃	
	
The	length	of	the	spiral	in	the	figure	….	for	a=1,	b=0.02,	angular	length	T=11π	units,	will	have	
an	overall	length	L≈11π+0.12(11𝜋)	!≈46.5	units.	
	
Taking	into	consideration	that	the	curvature	of	the	planar	spiral	antenna	is	a	function	of	r	(thus	
a	function	of	s)	we	should	follow	the	numerical	method	of	paragraph	3	in	order	to	calculate	
numerically	the	fundamental	(minimum)	eigenvalue	and	its	relative	eigenfunction.	
	
For	the	numerical	calculation	of	the	thin	planar	Archimedean	spiral	antenna	will	be	divided	in	
N	equal	arcs	of	𝑑𝜃=11π/N,	thus	the	respective	intervals	along	s	will	be	𝑑𝑠(𝑛) = i𝑟(𝑛)! + 𝑏! 𝑑𝜃			
And	the	respective	local	curvatures	will	be	𝜎(𝑠+) = (𝑟(𝑛)! + 2𝑏!)/(𝑟(𝑛)! + 𝑏!)4/!	
	
Thus,	the	set	of	respective	differential	equations,	as	shown	in	paragraph	3	of	the	present	paper,	
will	be:																																																								
																																																														∂V(s)	/	∂s	=	−	jΑ	(s)	I(s)	
																																																															∂I(s)	/	∂s	=	−	j	V(s)	
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		Where,	V(s)=	j	∂Y(s)	/	∂s,	I(s)=	Y(s)	and		𝐴(𝑠+)=	(
(!(()")

*
+ 𝜀)			

		And				[𝑉(𝑠+,-)			𝐼(𝑠+,-)] ≈ F		1		 − 𝑗𝐴(𝑠+)𝑑𝑠+		−𝑗𝑑𝑠+													1	
G [𝑉(𝑠+)			𝐼(𝑠+)	]				

	
The	fundamental	minimum	energy	ε	can	be	calculated	by	zeroing	the	function	of	the	sum	of	
impedances	(see	appendix	B)	and	starting	from	the	terminal	s1	=0,	where	the	initial	vector	is	
[𝑉(𝑠-)			𝐼(𝑠-)	] = [1			0	]	 ,	 the	 vector	 functions	 	𝑉(𝑠+)	𝑎𝑛𝑑		𝐼(𝑠+) 	in	 the	 respective	 points	 are	
defined	 and	 finally	 the	 electric	 current	 (EC)	 in	 the	 spiral	 antenna	 is	 calculated	 as	 EC(𝑠+ )=	
	𝐸𝐶𝑛|𝑉(𝑠+)𝐼(𝑠+)|		
	
In	 figure	 (b)	 is	 shown	 the	 electric	 current	 of	 the	 internal	 fundamental	 harmonic	 along	 an	
Archimedes	 spiral	 antenna	 of	 a=1	 and	 b=0.02	 as	 calculated	 numerically	 using	 the	MATLAB	
routines	of	appendix	B.	
		
As	noticed	also	for	the	helical	antennas,	the	frequency	of	the	operating	electromagnetic	waves	
for	spiral	antennas	is	not	defined	by	its	internal	characteristics.	It	is	the	author’s	belief	that	it	is	
possible	for	an	EM	wave	of	wavelength	near	2L	to	tune	the	spiral	antenna,	but	this	has	to	be	
proved	experimentally.	The	feed	points	of	the	spiral	antenna	should	be	at	the	closest	point	to	
the	middle,	where	the	current	becomes	maximum.	As	shown	in	the	figure	(d)	this	point	is	at	a	
distance	of	approximately	20	units	starting	from	the	initial	inner	edge	of	the	spiral	antenna	that	
will	have	a	total	length	of	approximately	46.5	units.	
	
	The	actual	dimensions	of	this	spiral	planar	antenna	are	approximately	16	times	smaller	than	
the	length	of	an	equivalent	dipole	antenna.						
	

	
figure	(d).	The	electric	current	along	the	length	s	of	the	spiral	antenna	shown	in	fig(c),	for	its	

fundamental	operation.		
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SPATIAL	FOURIER	TRANSFORM	ANALYSIS	OF	CURVILINEAR	ANTENNAS		
The	hard	problem	related	to	curvilinear	three-dimensional	antennas	is	the	calculation	of	their	
currents.	According	to	theory	the	electromagnetic	field	generated	by	a	thin	three-dimensional	
curvilinear	antenna	in	free	space	defined	as	a	function	of	its	linear	length	s(x,y,z)	along	it,	where	
𝐿 ≥ 𝑠 ≥ 0	,	of	known	electric	current	I(s)	of	frequency	f	can	always	be	calculated.	Here	we	use	
the	method	of	calculating	the	 far	 field	radiation	of	a	 linear	antenna	using	Fourier	 transform	
analysis	[10]	where	the	Spatial	Fourier	of	the	field	components	along	x	and	y	are	utilized.		
	
Any	curvilinear	thin	antenna	can	be	divided	into	N+1	successive	points	s1,s2,s3,…sN+1	,	thus	can	
be	 considered	 approximately	 equivalent	 to	 a	 successive	 set	 of	 N	 very	 small	 linear	 dipoles		
ds1=s2-s1,	ds2=s3-s2		…..,	of	known	respective	currents	I(sn)	where	all	the	dipoles	are	very	small	
and	where	the	first	point	of	the	antenna		is	the	s1	and	the	final	point	sN+1.		
	
Let	us	consider	the	antenna	as	a	transmitter.	Every	generated	electromagnetic	field	component	
represented	by	a	 function	 	𝐹𝐹(𝑥, 𝑦, 𝑧)𝑒𝑥𝑝	(𝑗𝜔𝑡)	can	be	spatially	Fourier	 transformed	along	x	
and	y	with	wave	numbers	α	and	β	thus		𝐹𝐹(𝑥, 𝑦, 𝑧) 𝑒𝑥𝑝 𝑒𝑥𝑝	(𝑗𝜔𝑡) 	→ 𝐹(𝛼, 𝛽, 𝑧)𝑒𝑥𝑝	(𝑗𝜔𝑡).	
	
Double	initial	letters	represent	the	initial	function	while	same	single	letters	represent	its	spatial	
Fourier	transform.		
	
It	can	be	proved	that	the	partial	differential	Maxwell	equations	in	free	space,	for	the	radiating	
far	 field	waves	are	equivalent	 to	 two	 independent	 sets	of	ordinary	differential	 equations	as	
follows:	
										78"

79
= − :!

;<=
𝐼"											

	7?$
79

= −𝑗𝜔𝜇𝑉"	

											78%
79
= − :!

;<@
𝐼A 	 					

7?&
79
= −𝑗𝜔𝜀𝑉A 								

	
Where:			𝑐! = 𝑘! − (𝛼! + 𝛽!)	, 𝑘! = 𝜀𝜇𝜔!			
	
α,	β,	c	and	k	are	shown	in	figure….	,	where	k	is	the	overall	wave	number	of	the	electromagnetic	
field,		𝜔 = B

C
	with	C=1/	√𝜀𝜇)	=	speed	of	light	in	empty	space,		𝜀𝜔 = 𝑘/𝑍𝑜, 𝜇𝜔 = 𝑘	𝛧𝑜,	Zo=120π							

and	α,	β,	and	c	are	the	wavenumbers	along	the	axis	x,y	and	z.	
	
by	the	initial	Maxwell	equation	analysis	can	be	shown	that	the	functions	Vm,	Im,	Ve	and	Ie	(in	
Fourier	space)	are	related	with	 	𝐸D , 𝐸E , 𝐸9	, 𝐻D , 𝐻E , 𝐻9,					which	are	the	Fourier	Transforms	of	
the	electric	and	the	magnetic	field	components,	by	the	following	relations:	
𝑉𝑚 = 𝑎𝐻𝑥 + 𝛽𝐻𝑦	 		 𝑉𝑒 = 𝛼𝐸𝑥 + 𝛽𝐸𝑦						
𝐼𝑚 = 𝛽𝐸𝑥 − 𝛼𝐸𝑦 = 𝜔𝜇Hz	 𝐼𝑒 = 𝛼𝐻𝑥 − 𝛽𝐻𝑥 = 𝜔𝜀𝐸z	
	
It	can	be	proved	furthermore	that	the	radiating	power	(far	field)	in	the	free	space	above	the	
horizon	of	any	curvilinear	antenna	of	known	Im	,	Ie,	can	be	calculated	by	the	integral		

𝑃 =
1
8𝜋!∬GHI

	 𝑐
𝛼! + 𝛽! ⋅ (

|𝐼A!|
𝜀𝜔 +

|𝐼"! |
𝜇𝜔 )𝑑𝛼𝑑𝛽	
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figure	(e).	Representative	figure	of	the	far	field	radiating	components	of	an	antenna	above	the	

horizon.		k	is	the	overall	vector	radiation,	α,β,c	its	components	along	the	axis	x,y,z		
	
Finally	 replacing, c = k	cοsθ, α^2 + β^2 = λ^2 = k^2sinθ^2, dαdβ	 = k^2cοsθ	sinθ	dθ	dφ 		 ,	
where	k	is	the	wavenumber	of	radiating	field,	the	following	integral	is	derived:	
																										𝑃 = B

J&! ∫ 	!&
6 ∫ 	&/!

6 (|?&(5,L)|
!

@'<
+ |?$(5,L)|!

='<
)(:M)	5	
	)N+	5	

)!𝑠𝑖𝑛	𝜃	𝑑𝜃𝑑𝜑		
	
Also,	taking	into	consideration	that	the	𝑠𝑖𝑛𝜃	𝑑𝜃𝑑𝜑		is	the	surface	spherical	differential	element	
on	a	sphere	of	radius	k,	the	radiation	pattern	of	the	antenna	is	given	by	the	following	function:		

𝐹(𝜑, 𝜃) =
1
8𝜋! (

|𝐼@(𝜃, 𝜑)|!

𝜀6𝜔
+
|𝐼"(𝜃, 𝜑)|!

𝜇6𝜔
)(
	 𝑐𝑜𝑠	𝜃	
	 𝑠𝑖𝑛	𝜃	)

!	

	
The	functions	𝑉"(𝛼, 𝛽)	and	𝑉@(𝛼, 𝛽)		can	be	calculated	using	the	integrals	along	the	curvilinear	
antenna	as	follows:			

𝑉"(𝛼, 𝛽) = � 	
	

)
𝐼(𝑥, 𝑦, 𝑧)𝑒;(0D,OE,:9)(𝛽𝑑𝑥 − 𝛼𝑑𝑦)	

V𝑒(𝛼, 𝛽) = � 	
	

)

𝐼(𝑥, 𝑦, 𝑧)
𝜀6 ⋅ 𝜔

⋅ 𝑒;(PD,OE,:9)[𝛼𝑐𝑑𝑥 + 𝛽𝑐𝑑𝑦 + (𝛼! + 𝛽!)𝑑𝑧]	

	
These	line	integrals	on	the	thin	curvilinear	antenna	can	be	calculated	numerically	by	dividing	
the	antenna	in	N	very	small	pieces	with	N+1	successive	points	𝑠I = (𝑥I , 𝑦I , 𝑧I)	where:	
𝛥𝑥I = 𝑥I,- − 𝑥I	,	𝛥𝑦I = 𝑦I,- − 𝑦I	,		𝛥𝑧I = 𝑧I,- − 𝑧I	

𝐺I =
𝛼(𝑥I + 𝑥I,-)

2 +
𝛽(𝑦I + 𝑦I,-)

2 +
𝑐(𝑧I + 𝑧I,-)

2 	
For		𝛥𝑥I ,	𝛥𝑦I	,		𝛥𝑧I	very	small								𝐺I ≈ 𝛼𝑥I + 𝛽𝑦I + 𝑐𝑧I	
	
𝑉"(𝛼, 𝛽) = ∑ 	Q

IR- 𝑒𝑥𝑝 𝑒𝑥𝑝	(𝑗𝐺I)		[𝛽(𝛥𝑥I) − 𝛼(𝛥𝑦I)]	𝐼I	 	 	

z	

c	
φ	 κ	

β	 y	

α	 θ	 λ	

x	
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𝑉A(𝛼, 𝛽) =
-

@'⋅<
⋅ ∑ 	Q

IR- 𝑒𝑥𝑝 𝑒𝑥𝑝	(𝑗𝐺I)		[	𝛼𝑐𝛥𝑥I + 𝛽𝑐𝛥𝑦I + (𝛼! + 𝛽!)𝛥𝑧I]𝐼I			
	
In	free	space	the	respective	functions		𝐼"(𝛼, 𝛽),	𝐼@(𝛼, 𝛽)	can	be	calculated	by	the	relations:	
	𝐼A(𝛼, 𝛽) = 𝑉@(𝛼, 𝛽)/(2𝑍@), 						𝐼"(𝛼, 𝛽) = 𝑉"(𝛼, 𝛽)/(2𝑍")	
Where		𝑍A = 𝑐/𝜀𝜔,				𝑍" = 𝑐/𝜇𝜔	
	
Replacing		𝛼, 𝛽, 𝑐	by	their	equivalent	functions	of		𝜃, 𝜑	the	function							|?%(5,L)|

!

@'<
+ |?$(5,L)|!

='<
		

can	be	calculated	and	the	radiating	far	field	power	and	its	radiation	pattern	can	be	calculated	
numerically.	
	

RADIATION	PATTERNS	OF	A	HELICAL	AND	SPIRAL	ANTENNAS	
	Using	the	MATLAB	codes	shown	in	Appendices	A	and	C	the	radiation	patterns	of	the	helical	and	
spiral	 curvilinear	antennas	 shown	 in	 fig	 (a)	 and	 (c)	has	been	derived	and	are	 shown	 in	 the	
figures	(ef),(g),(h),	and	(i)	
	

	
figure	(f).		Radiation	pattern	curves	of	the	helical	antenna	of	fig(a)	for	three	values	of	θ	and	

variable	angle	φ	for	its	fundamental	mode	operation				
	



	
	

	
	
	

600	

Vol.	10,	Issue	6,	December-2022	European	Journal	of	Applied	Sciences	(EJAS)	

Services	for	Science	and	Education	–	United	Kingdom	

	
figure	(g).		Radiation	pattern	curves	of	the	helical	antenna	of	fig(a)	for	three	values	of	φ	and	

variable	angle	θ	for	its	fundamental	mode	operation			
	

	
figure	(h).		Radiation	pattern	curves	of	the	spiral	antenna	of	fig(c)	for	three	values	of	θ	and	

variable	angle	φ	for	its	fundamental	mode	operation			
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figure	(i).		Radiation	pattern	curves	of	the	spiral	antenna	of	fig(c)	for	three	values	of	φ	and	

variable	angle	θ	for	its	fundamental	mode	operation			
	
The	given	MATLAB	codes	can	be	used	in	any	kind	of	curvilinear	antennas	in	order	to	calculate	
their	 fundamental	eigenvalues	and	their	respective	currents	when	are	properly	tuned	by	an	
external	 electromagnetic	 field	 of	 frequency	 f,	 and	 furthermore	 to	 calculate	 their	 radiation	
patterns.	 The	 purpose	 of	 presenting	 the	 MATLAB	 codes	 is	 to	 show	 that	 the	 mathematical	
analysis	presented	in	the	paper	leads	in	relatively	simple	codes.				
	

CONCLUSION	
Although	the	antenna	theory	books	and	papers	are	full	of	cumbersome	mathematical	analyses,	
their	whole	methodology	is	based	on	the	assumption	that	the	antennas	are	non-active	metal	
structures	 without	 internal	 dynamics.	 The	 only	 assumption	 made	 is	 that	 the	 electric	 field	
component	is	zero	inside	them	(or	normal	to	their	surface).	
	
However,	in	the	author’s	view,	tuned	antenna	properties	are	defined	by	the	internal	dynamics	
of	the	cloud	of	their	free	electrons	obeying	the	Schrodinger	equation.	Thus,	the	study	of	tuned	
antennas	 should	 start	 from	 their	 inner	 dynamics	 and	 their	 optimal	 operation	 will	 appear	
whenever	 the	 externally	 imposed	 electromagnetic	 excitation	 has	 a	 proper	 frequency	 in	
resonance	 with	 the	 internal	 electron	 dynamics.	 Studying	 electric	 antennas	 solely	 from	
Maxwell's	equations	seems	to	be	the	same	as	studying	springs	or	strings	solely	from	the	Applied	
Forces	on	them,	ignoring	their	internal	dynamics.		
	
Hence,	in	the	present	work	we	assume	that	the	metallic	lattice	of	any	antenna	acts	as	a	potential	
well	of	 free	electrons	confined	by	 its	external	surface	and	the	cloud	of	 them	forms	standing	
waves	 determined	 by	 the	 second-rank	 partial	 differential	 Schrodinger	 equations	 plus	 the	
respective	 boundary	 conditions	 (zero	 normal	 currents	 on	 their	 surfaces)	 with	 a	 frequency	
defined	by	the	external	electromagnetic	field.	
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In	 the	 paper,	 the	 quantum	well	 method	 is	 used	 in	 order	 to	 study	 thin	 curvilinear	metallic	
antennas	aiming	into	defining	curvilinear	configurations	behaving	as	small	electric	antennas	
i.e.	antennas	where	the	diameter	of	the	minimum	geometric	sphere	containing	the	antenna	is	
much	smaller	than	the	wavelength	of	their	operation.				
	
With	the	proposed	method	the	operation	of	two	curvilinear	antennas	one	helical	and	one	spiral	
was	studied	and	we	speculated	that	 it	 is	possible	 to	be	used	as	small	electric	antennas.	The	
offered	conclusion	is	that	these	antennas	could	possibly	operate	sufficiently	with	frequencies	
and	wavelengths	related	to	their	total	linear	length	which	is	much	higher	than	the	diameter	of	
their	containing	geometric	spheres.		
	
Given	 further	 experimental	 verification	 of	 the	 validity	 of	 the	 above	 assumptions,	 it	 would	
enable	the	construction	of	similar	small	electric	antennas	of	high	operating	wavelength.	This	
means	that	many	problems	demanding	small	electric	antennas	can	be	solved	with	the	use	of	
special	 types	 of	 helical	 or	 spiral	 antennas	 or	 similar	 types	 of	 curvilinear	 antennas.	 Let	 us	
mention	 that	 Spiral	 antenna	 has,	 for	 several	 applications,	 the	 advantage	 of	 being	 flat	 and	
therefore	more	convenient	to	be	used	as	a	kind	of	patch	antenna,	stuck	on	a	thin	dielectric	layer.	
It	is	obvious	that	these	hypothetical	conclusions	urge	for	experimental	confirmation,	due	to	the	
importance	of	the	subject	[11].	
	

ACKNOWLEDGEMENTS	
I	would	 like	 to	mention	 the	 fruitful	 remarks	during	 the	writing	of	 this	paper	 from	my	close	
friend	and	collaborator	Theophanes	E.	Raptis	
	
References	
Hisamatsu	Nakano,	Low-Profile	Natural	and	Metamaterial	Antennas	Analysis	Methods	and	Applications,	Hosei	
University,	Koganei,	Tokyo,	2016	John	Wiley	&	Sons,	Inc	

Christos	D.	Papageorgiou,	Curved	Linear	Antennas	as	Quantum	Traps,	International	Journal	of	Communications	
http://www.iaras.org/iaras/journals/ijoc		(2018)	

Kyohei	Fujimoto,Hisashi	Morishita,	Small	Antennas,	https://www.cambridge.org/core/books/modern-	small	
antennas/B669EC0F559A67C7543B83BF9B56855B	(2016)	

J.	Stockhofe	and	P.	Schmelcher,	Nonadiabatic	couplings	and	gauge-theoretical	structure	of	curved	quantum	
waveguides,	Physical	Review	A89	(033630)	(2014).	

C.D.	Papageorgiou	A.C.	Boucouvalas,	Propagation	constants	of	cylindrical	dielectric	waveguides	with	arbitrary	
refractive	index	profile	using	Resonance	technique,	Electronic	letter	2	September	1982	Vol	18	No	18		

C.	D.	Papageorgiou	A.	D.	Raptis,	A	method	for	solution	of	Schrodinger	equation,	Computer	Physics	
Communication	43(1987)		

Helical	antenna	https://en.wikipedia.org/wiki/Helical_antenna	

Helical	antenna	theory	https://www.antenna-theory.com/antennas/travelling/helix.php	

Spiral	antenna	https://en.wikipedia.org/wiki/Spiral_antenna	

C.D.Papageorgiou	and	J.D.	Kanellopoulos,	Equivalent	circuits	in	Fourier	space	for	the	study	of	electromagnetic	
fields,	j.Phys.	A:Math.	Gen.	15	(1982)	2569-2580,	Great	Britain	

https://spectrum.ieee.org/electrically-small-antenna	

	



	
	

	
	
	

603	

Papageorgiou, C. D. (2022). Helical and Spiral Antennas as Electric Small Antennas. European Journal of Applied Sciences, 10(6). 587-605. 

URL:	http://dx.doi.org/10.14738/aivp.106.13699	

APPENDIX	A		
MATLAB	routine	for	calculation	of	radiation	patterns	of	helical	antennas				
function	P=wwhelix(ff,hh)	
%	radiation	pattern	calculation	of	a	center	fed	helical	antenna	of	arc	11*pi,		
%	wavelength	kk=	
%	radius	aa	,	slope	bb,	pitch	2*pi*bb,	(antenna	length)=L*sqrt(aa^2+bb^2)		
%	t	is	the	variable	defining	the	helix	s=t*sqrt(aa^2+bb^2);	divided	in	1000	parts		
%	wave	length=(antenna	length)/pi,	antenna	electric	current=Ic(s)=sin(s)	
%	ff=angle	theta,	hh=angle	phi	
global	aa	bb	L		
aa=1.;	bb=0.02;	L=11*pi		
ab=sqrt(aa^2+bb^2);	
Im=0;	Ie=0;	
for	n=1:1001	
dt=L/1000;	t(n)=dt*(n-1);tt=t(n);	x(n)=aa*cos(tt);y(n)=aa*sin(tt);z(n)=bb*tt;z0=120*pi;	
ss(n)=tt*ab;s=ss(n);ddx(n)=-
aa*sin(tt)*dt;dx=ddx(n);ddy(n)=aa*cos(tt)*dt;dy=ddy(n);dz=bb*dt;	
Ic(n)=sin(s);kk=pi/(L*ab);c=kk*cos(ff);a=kk*sin(ff)*sin(hh);b=kk*sin(ff)*cos(hh);	
q(n)=a*x(n)+b*y(n)+c*z(n);	
vm(n)=exp(j*q(n))*(a*dy-b*dx)*Ic(n);im(n)=vm(n)*z0/2/cos(ff);	
ve(n)=exp(j*q(n))*Ic(n)/kk*z0*(a*c*dx+b*c*dy+(a^2+b^2)*dz);ie(n)=ve(n)/2/z0/cos(ff);	
Im=Im+im(n);Ie=Ie+ie(n);	
end	
P=(1/8/pi^2)*(abs(Ie^2)/kk*z0+abs(Im^2)/kk/z0)*(cos(ff)/sin(ff))^2;	
					

APPENDIX	B	
MATLAB	routines	for	the	calculation	of	currents	of	spiral	antennas	
function	y=spir1(x)	
%	calculates	the	impedance	in	a	middle	point	N/2	
global	aa	bb			
N=1000;aa=1;bb=0.02;	
ss=0;		
for	n=1:N;	
t=(n-1)*11*pi/N;dt=11*pi/N;	
r(n)=aa+t*bb;	
ku=(r(n)^2+2*bb^2)/(r(n)^2+bb^2)^1.5;		
A(n)=(ku^2/4+x);	
ss=ss+sqrt(r(n)^2+bb^2)*dt;	
s(n)=ss;	
ds(n)=sqrt(r(n)^2+bb^2)*dt;	
end	
z1=-j*10^10;z2=0;	
for	n=1:N/2;	
z1=(z1-j*A(n)*ds(n))/(-j*z1*ds(n)+1);	
z2=(z2-j*A(N-n)*ds(N-n))/(-j*z2*ds(N-n)+1);	
end;			
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y=imag(z1+z2);						
								%	if	y	is	zero	x	is	eigenvalue	
function	y=eigspir	
%Calculates	the	eigen	function	and	the	electric	current	of	the	spiral	antenna	as	f(n)		
ee=fzero(@spir1,0)	
%	ee	is	the	minimum	eigenvalue	calculated	by	fzero	near	0	
	global	N	aa	bb	L		
ss=0;	aa=1.;b=0.02;N=1001;L=11*pi;	
for	n=1:N;	
t=(n-1)*L/(N-1);dt=L/(N-1);	
	r(n)=aa+t*bb;	
	ku=(r(n)^2+2*bb^2)/(r(n)^2+bb^2)^1.5;		
	A(n)=(ku^2/4+ee);	
	ss=ss+sqrt(r(n)^2+bb^2)*dt;	
	s(n)=ss;	
	ds(n)=sqrt(r(n)^2+bb^2)*dt;	
end	
iv=[0;1];	
for	n=1:N-1		
AA=[1	 -j*A(n)*ds(n)	 ;	 -j*ds(n)	 1];	
iv=AA*iv;	
f(n)=imag(iv(1))*real(iv(2));	
s1(n)=s(n);	
end	
f=f/max(f);	
plot(s1,f)		
%	The	electric	current	(f(n))	of	the	spiral	antenna	along	its	length	(s1(n))	
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APPENDIX	C	
MATLAB	routine	for	the	calculation	of	the	radiation	patterns	of	spiral	antennas	
function	P=wwspiral(ff,hh)	
global	N	aa	bb	L	f		
ss=0;	aa=1.;bb=0.02;N=1001;L=11*pi;	
	%	radiation	pattern	calculation	of	a	properly	fed	spiral	antenna	of	arc	11*pi,		
	%	wavelength	kk	,	initial	radius	of	the	spiral	aa	,		pitch	bb				
	%	t	is	the	variable	angle	defining	the	spiral	;	divided	in	N	parts		
	%	wave	length=(antenna	length)/pi,		
	%	antenna	electric	current=EC(n)=f(n)	
%	ff=angle	theta,	hh=angle	phi		
	Im=0;Ie=0;	z0=120*pi;kk=pi/L;	
	for	n=1:N-1	
	dt=L/N;	tt(n)=dt*n;	t=tt(n);	r=aa+bb*t;	x(n)=r*cos(t);y(n)=r*sin(t);	
	dx=(bb*cos(t)-r*sin(t))*dt	;	dy=(bb*sin(t)+r*cos(t))*dt	;	
Ic(n)=f(n);	c=kk*cos(ff);	
		a=kk*sin(ff)*sin(hh);b=kk*sin(ff)*cos(hh);	q(n)=a*x(n)+b*y(n);	
vm(n)=exp(j*q(n))*(a*dy-b*dx)*Ic(n);	
		im(n)=vm(n)*z0/2/cos(ff);	
	ve(n)=exp(j*q(n))*Ic(n)/kk*z0*(a*c*dx+b*c*dy);	
	ie(n)=ve(n)/2/z0/cos(ff);	
	Im=Im+im(n);	Ie=Ie+ie(n);	
end	
	P=(1/8/pi^2)*(abs(Ie^2)/kk*z0+abs(Im^2)/kk/z0)*(cos(ff)/sin(ff))^2	
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